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Effect of the ratio of solid to liquid conductivity on the stability parameter of dendrites
within a phase-field model of solidification

A. M. Mullis
Institute for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom

~Received 14 March 2003; published 11 July 2003!

We use a phase-field model of dendritic growth in a pure undercooled melt to examine the effect of the ratio
m5ks /k l on the operating point of the needle crystal and hence the stability parameters* , whereks andk l

are the thermal conductivities of the solid and liquid phases, respectively. These results are compared with the
microscopic solvability calculations of Barbieri and Langer@Phys. Rev. A39, 5314~1989!#. We find that in our
phase-field models* varies much more rapidly withm than is predicted from solvability theory.

DOI: 10.1103/PhysRevE.68.011602 PACS number~s!: 68.70.1w, 81.30.2t, 64.10.1h
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I. INTRODUCTION

One of the most fundamental and all-pervasive mic
structures produced during the solidification of metals is
dendrite. Dendrites are crystals that develop complex, t
dependent shapes, normally as the result of extensive bra
ing which gives rise to a treelike structure. In recent years
complex patterns produced by growing dendrites have be
source of immense theoretical interest. The dendrite i
prime example of a pattern forming system where comp
morphologies arise from initially homogeneous conditio
due to the highly nonlinear response of the controlling s
tem. Although the governing equations for dendritic grow
have been known for many decades, finding solutions to
free-boundary problem, even in the tip region, has pro
enormously complicated.

Dendritic growth is also important from an engineeri
viewpoint. Remnants of dendritic microstructures often s
vive subsequent processing operations, such as rolling
forging, and the length scales established by the dendrite
influence not only the final grain size but also micro- a
hence macrosegregation patterns. This can have a w
ranging influence on both the properties of finished meta
products, affecting, for instance, mechanical properties,
rosion resistance, and surface finish, and the formability
metallic feedstock, such as the ability to resist hot tear
during rolling.

Where dendritic growth has been observed directly,
transparent analog casting systems such as succinonitril@1#
and xenon@2#, the evidence is that the morphology of de
drites grown at different undercoolings is probably se
similar when scaled against the tip radiusR. Consequently,
all the more obvious length scales of the dendrite are sim
multiples ofR, making the ability to predictR accurately a
problem of central importance to the theory of dendri
growth.

The first mathematical model of dendritic growth w
provided by Ivantsov@3#, who showed that an isotherma
paraboloid of revolution with radius of curvatureR at the tip,
growing at velocityV into an undercooled melt, was a sha
preserving solution to the diffusion equation, thus giving r
to the idea of the parabolic needle dendrite. The analyt
solution for such a crystal growing into its undercooled m
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is degenerate, in that it relates the Pe´clet number, and not the
growth velocity, to undercooling, where the Pe´clet number is
defined as

Pe5
VR

2a1
~1!

with a1 being the thermal diffusivity in the melt. Conse
quently, at a given undercooling an infinite set of solutio
are admissible, subject to the conditionVR5const. Such de-
generacy is not observed in nature, where a well-defi
growth velocity can always be associated with a given
dercooling.

In recent years the theory of microscopic solvability@4,5#
has provided a plausible mechanism for the selection ofR.
The principal physical insight of solvability theory is tha
surface tension acts as a singular perturbation which reso
the degeneracy found in the macroscopic problem. Howe
the selection mechanism turns out to be beyond all order
perturbation theory@6# and consequently rather subtle tec
niques need to be employed to solve the problem.

The basis of solvability theory is that Green’s functio
can be employed to convert the diffusion and interface c
tinuity equations into an integro-differential equation th
contains the surface energy. Perhaps counter to intuitio
turns out that in the case of an isotropic surface energy
equation has no solutions. Anisotropy can be introduced
letting

d0→d0~u!5d0~11g cosku! ~2!

whered0 is the thermal capillary length, defined by

d05
sTmc

L2 . ~3!

Here L is the latent heat per unit volume,c is the specific
heat per unit volume,s is the interfacial energy between th
solid and liquid phases,Tm is the melting temperature,g
defines the anisotropy strength,u is the angle between th
local outward pointing normal to the interface and the pr
cipal growth direction, andk is a mode number, which fo
©2003 The American Physical Society02-1
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growth in a cubic metal will be 4. The principal prediction
this theory is that capillary forces break the Ivantsov deg
eracy via the relationship

R2V5
2ald0

s*
, ~4!

where s* is the anisotropy dependent eigenvalue for
problem, which for small Pe´clet numbers is found to vary a
s* (g)}g7/4.

In recent years further progress has been made tow
understanding dendritic growth by the advent of phase-fi
modeling@7–9#. The basis of the phase-field technique is t
definition of a phase variablef(x,t), which is continuous
over the whole regionV occupied by the system,x being the
spatial coordinates withinV andt being time. The value off
indicates whether the material is solid or liquid. The con
nuity of f overV implies that the interface between the so
and liquid regions is diffuse, which is one of the cent
differences between the phase-field formulation of the d
drite growth problem and microscopic solvability. The ev
lution of the phase variablef is governed by an entrop
functional which ensures the increase in entropy and wh
is coupled to either the temperature fieldT(x,t) for thermal
growth or the solute concentration fieldc(x,t) for solutal
growth.

Like solvability theory, phase-field techniques predict th
in an unconstrained medium dendrites will be formed only
the presence of a nonzero crystalline anisotropy@8#, although
where the medium is constrained by a narrow channel th
not the case and dendrites can be formed@10,11# in a me-
dium with isotropic properties. For growth in an unco
strained medium the tip radiusR is determined by the
strength of the anisotropyg. Phase-field theory would thu
seem a natural companion to solvability theory for prob
fundamental aspects of the dendrite growth problem. Inv
tigating the correspondence between the two approac
though, is not trivial. The phase-field method is a diffu
interface technique, and it is found in practice that the va
of R predicted depends upon the value of the interface th
nessd assumed. Convergence with solvability theory c
thus be expected only in the limit of vanishing interfa
width. However, as the element sizeDx in the computational
mesh is determined by the requirement that the diffuse in
face be resolved (Dx,d), using very fine interface widths
can be prohibitively computationally intensive. Moreover,
many formulations of the phase-field problem, interface
netics are a necessary component which cannot be reduc
arbitrarily low levels@8#. Consequently, the low growth ve
locity regime studied by solvability theory is not always a
cessible in phase-field modeling.

The most significant work to date in reconciling the pr
dictions of solvability theory with phase-field modeling h
been by Karma and co-workers@12–14#, who have pio-
neered a formulation of the phase-field problem that bot
efficient in the sharp interface limit and can accommod
arbitrarily slow growth~small kinetic effects!. They found
that for succinonitrile~small g! there was reasonable agre
ment between their phase-field model and solvability the
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with the predicted value ofs* being slightly higher in the
phase-field model than that given by linear solvability theo
This actually leads to the phase-field model giving bet
agreement with experiment than solvability theory. Howev
for pivalic acid~largeg! they found a significant variation in
the value ofs* predicted by the different techniques. The
attribute this to the dendrite tip shape departing significan
from parabolic for high anisotropy materials. Linear sol
ability theory, which assumes that anisotropy acts as a sm
shape correction to the Ivantsov paraboloid, may not ap
under these conditions. Moreover, the definition ofR, and
hences* , for nonparabolic shapes is ambiguous. Nonet
less, for low anisotropy materials, which includes most m
als, phase-field techniques have been demonstrated to
valid tool for probing the tip shape and operating point
needle crystals.

Due to their complexity, solvability models are often r
stricted to the assumption of either symmetric or asymme
conductivity, that is, eitherks5k l or ks50, whereks andk l
are the thermal conductivities of the solid and liquid phas
respectively. The effect of nonsymmetric conductivities
microscopic solvability has been investigated to first ord
by Barbieri and Langer@15#, who find

s* ~m!'
2

11m
s* ~m51!, ~5!

wherem5ks /k l . In this paper we use a phase-field model
dendritic growth in a pure undercooled melt to probe t
effect of the ratiom on s* .

Although ks5k l is a common assumption in the mode
ing of thermal dendritic growth, reduced phonon scatter
in the solid phase, relative to the liquid, means that in rea
ks.k l in most metallic materials. However, quantifying th
ratio ks /k l , even for pure metals, is difficult due to th
scarcity of thermal conductivity data for liquid metals. F
solid metals at high temperature the Wiedemann-Fra
Lorenz law, that

k

seT
5

p2kB
2

3e2 52.4531028 W V K21 ~6!

for all metals, is generally a reasonable approximati
wherese is the electrical conductivity. A number of studie
@16,17# have shown that this relationship also appears to h
for liquid metals, and consequently the ratioses/sel may be
used as a guide toks /k l . This ratio is typically around 1.5
for many metals although the variations are quite large. V
ues as low as 1.05 have been reported for Fe@18,19#, while
Cu, Ag, and Au all have values@20# close to 2. Mn is excep-
tional for a metal in thatses/sel50.6 @20#. Si and Ge show
ses/sel!1, although as this is due to the phase change fr
a semiconducting solid to a metallic liquid, electrical co
ductivity is probably not a good guide to thermal conduct
ity in these cases. Although both Si and Ge show face
growth under conventional solidification conditions, Ge h
been shown@21,22# to grow dendritically during rapid solidi-
fication due to kinetic roughening of the solid-liquid inte
2-2
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face @22#. On balance, we believe the range 0.5<ks /k l
<2.0 probably covers most materials of interest.

II. COMPUTATIONAL METHOD

For solidification of a pure material we proceed by wr
ing the Landau-Ginzberg entropy functional:

F5E
V
F f ~f,T!1

1

2
«2~“f!2GdV, ~7!

whereT(x,t) is the temperature and« is a parameter that is
constant for an isotropic material. The free-energy den
f (f,t) is a double well potential with respect tof. Various
choices forf have been presented; here we closely foll
the model of Wheeleret al. @8# for the solidification of a pure
undercooled melt, and the reader is directed to that paper
the work of Wanget al. @23# for a detailed derivation of the
model. Within this model 0<f<1, with f[0 representing
the pure solid andf[1 the pure liquid.

Following Wheeleret al. @8# we proceed by defining a
reference length scalew, typically the longest dimension o
the domainV, against which other lengths may be nond
mensionalized. The corresponding diffusion time scale
thusw2/al , allowing the definition of a nondimensional tim
t5tal /w2. Finally, defining a dimensionless temperatureu
by T5Tm1uDT, whereDT is the undercooling of the melt
the transport equation may be written as

]u

]t
1

1

D
p8~f!

]f

]t
5“•~ ā“u!, ~8!

where the prime denotes differentiation of the polynomialp:

p~f!5f3~10215f16f2!. ~9!

ā is the thermal diffusivity of the material, normalized to th
value of that for the pure liquid, namely,

ā5
fa11~12f!as

a1
, ~10!

andD is the dimensionless undercooling,

D5
cDT

L
. ~11!

The second term on the left hand side of Eq.~8! thus repre-
sents the latent heat associated with the change of pha
the material.

The evolution of the phase field is given by

«̃2

m

]f

]t
5f~12f!Ff2

1

2
130«̃aDuf~12f!G1 «̃2

“

2f,

~12!

where the quantities in Eq.~12! are given by Wheeleret al.
@8# as
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a5
&wL2

12csTm
, ~13!

m5
jsTm

a1L
, ~14!

and

«̃5
d

w
. ~15!

Hered is a parameter defining the width of the diffuse inte
face andj is the kinetic parameter.

Equations~8! and~12! represent a complete description
solidification in an isotropic system. However, it is well e
tablished from microscopic solvability theory that crystallin
anisotropy plays a central role in the selection of the ope
ing point during the growth of needle crystals@4#. Conse-
quently, the inclusion of anisotropy is a necessary feature
the phase-field model. This is achieved by writing«̃ as a
function of angle. For a two-dimensional system we write

«̃~u!5 «̄h~u!5 «̄~11g cosku!. ~16!

Incorporating the anisotropic form of«̃ given by Eq.~16!
into Eq. ~12! gives @8#

«̄2

m

]f

]t
5f~12f!Ff2

1

2
130«̄aDuf~12f!G

2 «̄2
]

]x S h~u!h8~u!
]f

]y D1 «̄2
]

]y S h~u!h8~u!
]f

]x D
1 «̄2

“•~h2~u!“f!. ~17!

Using the expression for the outward pointing normaln̂ to
the interface,

n̂5
“f

u“fu
5cosu x̂1sinu ŷ ~18!

we have

tanu5
fy

fx
~19!

and, in addition,

ux5
fxfxy2fyfxx

u“fu2 , ~20!

uy5
fxfyy2fyfxy

u“fu2 , ~21!

which is sufficient for the evaluation of Eq.~17!.
The system of differential equations represented by E

~8! and ~17! is solved using a standard finite differenc
scheme. The transport equation is solved using an alterna
direct implicit scheme, which is unconditionally stable, irr
spective of the time stepdt employed. However, the phase
2-3
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TABLE I. Material parameters used in the simulations. Note that values ofd are given for two sets of
simulations. In the first the grid spacing andd are held fixed, in the second they are rescaled to a fi
multiple of the dendrite tip radiusR.

Quantity Symbol Value Units

Latent heat L 2.353109 J m23

Specific heat c 5.423106 J K21 m23

Liquidus temperature Tm 1728 K
Thermal diffusivity k 1.5531025 m2 s21

Surface energy s 0.370 J m22

Surface energy anisotropy g 0.02
Interface kinetic parameter j 1.4 m s21 K21

Interface width parameter d 7.5 ~fixed! or
0.061R ~rescaled!
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field equation is highly nonlinear, and consequently there
no simple implicit scheme suitable for its solution. We ha
therefore used an explicit numerical scheme to obtain
time dependent solution to Eq.~17!. This will be subject to a
Courant type stability condition of the form

dt<
~dx!2

cm
, ~22!

wherec would take the value 4 for a linear equation. T
nonlinear nature of Eq.~17! actually imposes a more restric
tive condition on the time step, and the optimum value oc
has been determined empirically.

This model has been used to study the behavior ofV and
R as a function ofm. During the simulation the curvature 1/R
of the dendrite tip is evaluated along thex axis ~where the
proscribed anisotropy ensures that the dendrite tip does g
along thex axis!. Following Wheeleret al. @8#, this may be
written as

1

R
5

fyy

fx
. ~23!

The rate at which the tip advances~identified by the point of
maximum curvature! is used to calculateV. The evolution of
bothV andR is tracked to ensure that a steady state has b
obtained, and once this is the case representative valuesV
and R for the simulation are calculate by averaging ove
minimum of 5000 time steps.

However, great care needs to be exercised in the est
tion of R. Karma and Rappel@12# have argued that the dif
fuse solid-liquid interface assumed in phase-field mod
leads to a second order effect in which the modeled atta
ment kinetics depend upon the thickness of the interfa
Moreover, Wheeleret al. @8# have shown that, in the phase
field model used here, the well-known equations for sin
phase solidification are recovered only in the asympto
limit of a sharp interface. In order to eliminate effects due
interface thickness as far as possible, and ensure direct c
parability between simulations, the following procedure h
been adopted. For each value ofm an initial run is conducted
to determine an approximate value ofR. All these initial runs
are performed using the same grid size and interface th
01160
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ness. The computational mesh and the interface width
then rescaled such that a second set of simulations is ge
ated in which the mesh size and interface width are a c
stant multiple of the tip radiusR. This second set of simula
tions is thus fully self-similar. In the results presented bel
the plotted error bars indicate the magnitude of the discr
ancy between the values obtained using the two proced
outlined above. Only effects that show the same qualita
behavior in both data sets are described.

III. RESULTS AND DISCUSSION

The absence of kinetic effects in the solvability model
Barbieri and Langer@15# means that their results will gene
ally only be valid in the limit of vanishing Pe´clet numbers.
Although solvability models have been formulated that
corporate kinetic effects, as far as we are aware no form
tion exists that includes both interface kinetics and nonsy
metric conductivities. However, interface kinetics are
necessary part of our phase-field model, and conseque
although a comparison can be made for small Pe´clet number,
these are still of necessity finite. In fact in this study t
effect ofm on s* has been studied in detail at two values
undercooling,DT5150 K (D50.34) andDT5350 K (D
50.80). These correspond to Pe´clet numbers~calculated at
m51) of Pe'0.02 and Pe'0.10, respectively. The first o
these is in the regime where interface kinetics will be we
and consequently the predictions of solvability theory mig
be expected to be approximately valid. However, for the m
terial parameters used here, values for which are given
Table I, the higher value of Pe corresponds to the cas
which interface kinetics cannot be considered negligi
@24#, and consequently greater departures from the pre
tions of solvability theory might be expected.

The predicted variation ofs* as a function ofm in these
two cases is shown in Fig. 1. As some variation ofs* with D
is to be expected, and in order to plot both data sets on
same axes, each data set has been normalized agains
appropriate value ofs* (m51). Also shown is a solid line
representing the expected variation ofs* with m as pre-
dicted by solvability theory and given by Eq.~5!. From Fig.
1 it is apparent that, although in both cases the variation
s* with m is in the same sense as predicted by solvabi
2-4
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theory, the magnitude of that variation is significan
greater. Moreover, although the greatest departure is ind
at the higher undercooling studied, significant departu
from the analytical model are seen even at the lower un
cooling. These departures are most significant form,1. At
m50.5 the variation ins* is 3.25 times that predicted b
solvability theory at Pe50.02 and 6.5 times that predicted b
solvability theory at Pe50.10. Form.1, which is the case
corresponding to most metallic materials, the departu
from the analytical theory are less extreme, although s
significant. Atm52.0 the variation ins* is 1.85 times that
predicted by solvability theory at Pe50.02 and 2.5 times tha
predicted by solvability theory at Pe50.10.

In order to ascertain whether the undercooling has a
tematic effect ons* (m) and to establish whether there is
correspondence between our phase-field model and the
of Barbieri and Langer@15#, the behavior of the derivative
]s* (m)/]m in the vicinity of m51 has been studied. Value
of ]s* (m)/]m at m51 have been estimated numerically b
running simulations atm50.9, 1.0, and 1.1 over a wid
range of undercoolings fromDT575 K (D50.17) to DT
5400 K (D50.92). The variation in]s* (m,DT)/]m, nor-
malized against 1/s* (m51,DT), is shown in Fig. 2. It is
found that, when plotted againstDT, ]s* (m,DT)/]m is, to
a very good approximation, linear, allowing extrapolation
the limit DT→0. From Eq.~5! we have

FIG. 1. The variation ins* @normalized againsts* (m51)] as
a function of m as predicted by our phase-field model for P
50.02 and 0.10. Also shown~solid curve! is the prediction of the
analytical solvability model of Barbieri and Langer@15#. Note that
where error bars are not shown this is because they are smaller
the plotting symbol used.
01160
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1

s* ~m51!

]s*

]m
5

22

~11m!2 , ~24!

which at m51 evaluates to2 1
2 , irrespective ofDT. From

the figure it is clear that in the limit ofDT→0 our estimate
of @1/s* (m51)#@]s* (m)/]m# does indeed tend to a valu
close to2 1

2 , and consequently we would conclude that t
analysis presented is not incompatible with the results
solvability theory. Any residual difference between our es
mate in the limitDT→0 and the expected value of2 1

2 is
probably a consequence of our simulation being run at fin
g. However, we would note that with regard to this particu
effect significant departures from the results of solvabil
theory are encountered even at relatively modest underc
ings.

For reference, an undercooling ofDT5150 K results in
an estimated growth velocity of 3.6 m s21, while at DT
5350 K this figure is 25 m s21. By way of comparison, un-
dercoolings of 350 K can routinely be achieved in a range
metallic materials using containerless processing techniq
and these large undercoolings result in very high growth
locities. In pure Cu, undercooled by 336 K, growth velociti
as high as 156 m s21 have been recorded@25,26#. The results
presented here should thus be borne in mind when u
solvability theory to fit experimental data sets obtained fro
rapid solidification experiments.

an

FIG. 2. The estimated derivative]s* /]m @normalized against
s* (m51)] shown as a function of undercoolingDT. Note that
extrapolation to the slow growth regime,DT→0, yields a value
close to2

1
2 , the value given by the solvability model of Barbie

and Langer@15#.
n,

.

@1# D. P. Corriganet al., Phys. Rev. E60, 7217~1999!.
@2# U. Bisang and J. H. Bilgram, Phys. Rev. E54, 5309~1996!.
@3# G. P. Ivantsov, Dokl. Akad. Nauk SSSR58, 567 ~1947!.
@4# D. A. Kessler, J. Koplik, and H. Levine, Adv. Phys.37, 255

~1988!.
@5# Y. Pomeau and M. Ben-Amar,Solids far from Equilibrium

~Cambridge University Press, Cambridge, 1992!, pp. 365–431.
@6# E. Brener and D. Temkin, Phys. Rev. E51, 351 ~1995!.
@7# R. Kobayashi, Physica D63, 410 ~1993!.
@8# A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Physica D66,

243 ~1993!.
@9# A. M. Mullis and R. F. Cochrane, Acta Mater.49, 2205~2001!.

@10# E. Brener, H. Muller-Krumbhaar, Y. Saito, and D. Tempki
Phys. Rev. E47, 1151~1993!.

@11# F. Marinozzi, M. Conti, and U. Marini Bettolo Marconi, Phys
Rev. E53, 5039~1996!.
2-5



n,

nf

ci.

er.

R.

v.

r.

A. M. MULLIS PHYSICAL REVIEW E 68, 011602 ~2003!
@12# A. Karma and W. J. Rappel, Phys. Rev. Lett.77, 4050~1996!.
@13# A. Karma and W. J. Rappel, J. Cryst. Growth174, 54 ~1997!.
@14# A. Karma, Y. H. Lee, and M. Plapp, Phys. Rev. E61, 3996

~2000!.
@15# A. Barbieri and J. S. Langer, Phys. Rev. A39, 5314~1989!.
@16# G. Busch, H.-J. Gu¨ntherodt, W. Haller, and P. Wyssman

Phys. Lett.43A, 225 ~1973!.
@17# W. Haller, H.-J. Gu¨ntherodt, and G. Busch, inLiquid Metals

1976, edited by R. Evans and D. A. Greenwood, IOP Co
Ser. No. 30~IOP, Bristol, 1977!, p. 207.

@18# Y. Ono and T. Yagi, Trans ISIJ12A, 314 ~1972!.
@19# Y. Kita, M. Zeze, and Z. Morita, Trans ISIJ22A, 571 ~1982!.
@20# T. Iida and R. I. L. Gutherie,The Physical Properties of Liquid
01160
.

Metals ~Clarendon Press, Oxford, 1988!.
@21# S. E. Battersby, R. F. Cochrane, and A. M. Mullis, Mater. S

Eng., A226, 443 ~1997!.
@22# S. E. Battersby, R. F. Cochrane, and A. M. Mullis, J. Mat

Sci. 34, 2049~1999!.
@23# S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S.

Coriell, R. J. Braun, and G. B. McFadden, Physica D69, 189
~1993!.

@24# A. M. Mullis, Acta Mater.51, 1959~2003!.
@25# K. I. Dragnevski, R. F. Cochrane, and A. M. Mullis, Phys. Re

Lett. 89, 215502~2002!.
@26# A. M. Mullis, K. I. Dragnevski, and R. F. Cochrane, Mate

Sci. Eng.~to be published!.
2-6


